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Chronic kidney disease (CKD) is a major public 
health concern, estimated to affect 13% of the global 
population1. In the USA, approximately 30 million 
people, or one in seven individuals, have CKD, and this 
number is predicted to increase2. Globally, CKD results 
in 5–10 million deaths annually, a figure that is likely to 
be an underestimate3,4. In the USA, 340 people initiate 
dialysis treatment every 24 h (ref.2) and 240 patients 
on dialysis die daily5. Mortality among patients with 
CKD is largely attributable to an enormous cardiovas-
cular disease (CVD) burden and an increased risk of 
major adverse cardiovascular events, including athero-
thrombotic disorders that drive myocardial infarction 
and stroke, heart failure, arrhythmias and sudden cardiac 
deaths in both adult and paediatric populations6–10. These 
conditions contribute to a CVD mortality in patients with 
CKD that is at least double that of CVD in patients 
without CKD11,12. CVD risk also increases with severity 
of CKD: 27.5% of deaths among patients with early-stage 
CKD (stages 1–2) can be attributed to CVD, increas-
ing to 58% among patients with advanced-stage CKD 
(stages 4–5). In fact, the life expectancy of patients with 
advanced CKD is shortened by over 16 years owing to 
CVD-related mortality13,14.

The previously held dogma that CVD and CKD are 
merely associated entities resulting from the existence 

of common risk factors has been debunked by large epi-
demiological studies13. A meta-analysis of 1.4 million 
individuals from 30 published cohort studies suggested 
that after adjusting for traditional cardiovascular risk 
factors (such as age, sex, ethnicity, hypertension, diabe-
tes status, high cholesterol and smoking), the risk gra-
dient for cardiovascular mortality was evident at early 
stages of CKD and increased linearly with progression 
of CKD and albuminuria11,12. Another meta-analysis 
that involved 1.02 million participants from 30 general 
population and high-risk cardiovascular cohorts and  
13 CKD cohorts found that the association of CKD with 
cardiovascular mortality was not influenced by the pres-
ence or absence of diabetes or hypertension15. This con-
clusion was corroborated by findings from the Alberta 
Kidney Disease Network of 1.26 million participants, 
which demonstrated that the rate of incident myocar-
dial infarction was substantially lower among patients 
with diabetes mellitus and normal kidney function than 
among those with concomitant CKD and proteinuria16.

Further supporting evidence that CKD is an inde-
pendent risk factor for CVD stems from the observation 
that interventions that target conventional CVD risk fac-
tors do not adequately prevent cardiovascular events in 
patients with CKD17–19. Large clinical trials have demon-
strated that statins have limited ability to reduce primary 
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cardiovascular events in patients with CKD17,18. Similar 
results have been noted for other cardiovascular pro-
tective agents19. Collectively, these studies indicate that 
CKD is a strong and independent risk factor for CVD.

A growing body of evidence has linked the cardiovas-
cular risk of CKD to an accumulation of uraemic toxins 
that occurs with progression of CKD. For patients with 
kidney failure, kidney transplantation represents the 
optimal form of kidney replacement therapy in terms 
of survival outcomes20–22. Kidney transplantation is also 
associated with a reduced risk of cardiovascular events 
compared with haemodialysis23,24, and in fact, has been 
reported to reverse end-organ toxicities, such as cardiac 
fibrosis25, arterial stiffness26 and improve remodelling 
and cardiovascular reserve27. Importantly, and unlike 
haemodialysis, kidney transplantation is associated with 
a significant reduction in the levels of several uraemic 
toxins28–30, which is likely to underlie some of the ben-
efits observed with transplantation. The identification 
of uraemic toxins as CKD-specific risk factors for CVD 
renders it imperative to consider strategies to lower their 
levels or abrogate their toxicity. This Review summa-
rizes pharmacological and non-pharmacological means 
of abrogating the effects of uraemic toxins. Device 
therapies, including innovations in dialysis, have been 
reviewed elsewhere31,32 and are not covered here.

CKD: a unique milieu for CVD
CKD is characterized by the retention of several toxic 
metabolites and solutes that are appropriately termed 
uraemic toxins. These toxins are chemicals that accu-
mulate as a result of failed elimination by the kidneys, 
and through interaction with biological processes pro-
duce a response that is unfavourable to the host33. Based 
on physicochemical characteristics that determine their 
response to conventional haemodialysis, uraemic tox-
ins are traditionally classified as either free water-soluble 
low-molecular-weight solutes, protein-bound (PB) urae-
mic toxins and middle molecules. Low-molecular-weight 
solutes include phosphorus, urea and creatinine; middle 
molecules include fibroblast growth factor 23 (FGF23) 
and β2-microglobulin; whereas PB uraemic toxins 
include indoxyl sulfate, indoxyl acetate, kynurenine, 
kynurenic acid, p-cresyl sulfate33–35 and indole-3 acetic 
acid. Trimethylamine N-oxide (TMAO) is another 

uraemic toxin that has been linked to CVD in the general 
population and is also found at elevated levels in patients 
with CKD36. The association of uraemic toxins such as 
phosphorus and FGF23 with CVD has been reviewed 
elsewhere37,38; here, we focus on PB uraemic toxins.

Generation and metabolism of PB uraemic toxins
Many uraemic toxins are the products of dietary con-
stituents. For example, p-cresyl sulfate is derived from 
tyrosine, and indoxyl sulfate, indoxyl acetate, kynure-
nine and kynurenic acid are products of tryptophan 
metabolism (Fig. 1a). Dietary tryptophan is catabo-
lized through distinct pathways. A small fraction of 
tryptophan undergoes degradation in the intestine 
by tryptophanase-containing bacteria to generate 
indole. Upon absorption through the portal circula-
tion, indole is then converted to indoxyl and then trans-
formed into indoxyl sulfate and indoxyl acetate for 
excretion through the kidneys39. A large proportion 
(>90%) of dietary tryptophan is absorbed directly 
through the portal circulation and is subsequently 
converted to N-formyl-l-kynurenine by tryptophan 
2,3-dioxygenase 2 (TDO2) in the liver and indoleamine 
2,3-dioxygenase 1 (IDO1) and IDO2 in the peripheral 
tissues to form kynurenine40 (Fig. 1b). Kynurenine is fur-
ther catabolized by kynureninase to increase subsequent 
downstream products such as anthranilic acid and quin-
olinic acid, which represents the major route of kynure-
nine clearance41,42, or by kynurenine amino transferases 
to kynurenic acid43. In kidney failure, an accumulation 
of tryptophan metabolites occurs as a consequence of 
its increased production in the gut owing to gut dys-
biosis, alterations in enzyme activity and its ineffective 
excretion by the kidneys39,44–46. In contrast to these PB 
uraemic toxins, TMAO is a low-molecular-weight met-
abolic product of dietary precursors l-carnitine, cho-
line and phosphatidylcholine, which are derived from 
red meat, eggs, fish and poultry (Fig. 2). The intestinal 
microbiome degrades these precursors into trimethyl-
amine (TMA), which is further converted into TMAO 
in the liver36,47. Elevated TMAO levels in CKD are likely 
to be due to its potentially enhanced production and 
reduced filtration48.

Cardiovascular effects of PB uraemic toxins
A wealth of clinical studies has linked the above- 
described uraemic toxins to cardiovascular mortality 
in patients with CKD49–53, in association with profound 
cardiac and vascular dysfunction. Although some phe-
notypic overlap exists in the profile of CVD among the 
general population and patients with CKD, distinct 
differences exist54 imparted by the specific cardiac and 
vascular toxicity of TMAO36,53,55,56, indoxyl sulfate57,58, 
p-cresyl sulfate51,59, kynurenine60 and indole-3 acetic 
acid61, as reviewed elsewhere60.

Cardiac dysfunction induced by uraemic toxins 
is characterized pathologically by myocardial fibro-
sis and remodelling abnormalities62 (Fig. 3). Although 
the pathogenesis underling these entities is likely to 
be multifactorial, certain uraemic toxins are impli-
cated. For example, treatment of cultured neonatal rat 
cardiomyocytes with indoxyl sulfate induces protein 

Key points

•	Patients with chronic kidney disease (CKD) retain myriad chemical compounds, known 
as uraemic toxins, that mediate systemic complications including cardiovascular 
disease (CVD); levels of these toxins rise with CKD progression, further increasing 
cardiovascular risk.

•	Early interventions that target conventional cardiovascular risk factors, such as 
obesity and hypertension, combined with approaches to directly target uraemic 
toxins have potential to lower the risk of CVD in patients with CKD.

•	Non-pharmacological measures to target uraemic toxins include approaches 	
to reduce their biosynthesis through dietary interventions and/or microbial 
manipulation; both of these approaches have limitations.

•	Pharmacological strategies to suppress cellular events triggered by uraemic toxins 
are rapidly emerging as an attractive approach and include inhibitors of the aryl 
hydrocarbon receptor pathway, kinase inhibitors, Klotho or kynureninase 
supplementation, AST-120, meldonium and 3,3-dimethyl-1-butanol (DMB).
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synthesis and increases cell volume, reminiscent of the 
cardiac hypertrophy observed in patients with CKD63. 
Rats treated with indoxyl sulfate also showed increased 
myocardial fibrosis64. Administration of p-cresyl sulfate 
to mice induced cardiomyocyte apoptosis — an effect 
that might contribute to diastolic dysfunction in patients 

with CKD65. Mechanisms such as endoplasmic reticu-
lum and oxidative stress are also likely to contribute to 
myocardial damage induced by uraemic toxins66,67.

Uraemic vascular disease is characterized by endothe-
lial dysfunction, accelerated atherosclerosis, neointimal 
hyperplasia, a hyperthrombotic state, abnormal vascular 
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Fig. 1 | Uraemic toxin production from tryptophan metabolism.  
a | Tryptophan obtained through dietary sources can be degraded in the 
intestine by tryptophanase-containing bacteria to produce indole, which 
is then converted into indolic solutes such as indoxyl sulfate in the liver. 
Tryptophan absorbed through the portal circulation can also undergo 
metabolism in the liver to produce kynurenine. Indoxyl sulfate and 
kynurenine are considered to be uraemic toxins; they are normally 
excreted by the kidney but are retained in patients with chronic kidney 
disease (CKD). Elevated levels of these uraemic toxins in patients with 

CKD activate the aryl hydrocarbon receptor (AHR) to increase levels of 
tissue factor (TF) in the vessel wall, thereby enhancing thrombotic 
processes. b | A number of uraemic toxins, including indoxyl sulfate, 
indoxyl acetate, kynurenine and kynurenic acid are derived from 
tryptophan metabolism. Kynureninase is likely to augment the 
degradation of kynurenine and increase its downstream metabolites such 
as anthranilic acid and quinolinic acid, which are also considered to be 
uraemic toxins. Part a adapted with permission from ref.77, American 
Society of Nephrology.
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calcification, microvasculature rarefaction and sup-
pressed angiogenesis (Fig. 3). Uraemic toxins contribute 
to these pathological conditions by promoting the dys-
function of several cell types including endothelial cells, 
endothelial progenitor cells, vascular smooth muscle 
cells (VSMCs), platelets and polymorphonuclear cells. 
For example, indolic solutes and other uraemic toxins 
compromise various properties of endothelial cells, 
including their proliferation, survival, migration, perme-
ability, anticoagulant properties and nitric oxide-induced 
vasodilation68–71. Of note, aryl hydrocarbon receptor 
(AHR) signalling72–75 may be particularly important for 
the cardiovascular effects of uraemic toxins. In endothe-
lial cells and VSMCs, indoxyl sulfate and kynurenine 
bind to the ligand-binding domain of AHR, leading to 
AHR activation and inducing the transcription of F3, 
which encodes tissue factor74 (Fig. 4). Tissue factor is the 
primary trigger of the extrinsic coagulation cascade and 
drives thrombosis after vascular injury (for example, after 
vascular surgery or endovascular procedures). In addi-
tion to increasing F3 transcription, ligand-activated AHR 
binds tissue factor in the cytosol to prevent its degrada-
tion73,76. The association of this indoxyl sulfate and the  
kynurenine–AHR–tissue factor axis with thrombosis 
has been validated in two independent patient cohorts77. 
Moreover, AHR activation is also implicated in the ather-
osclerosis of Apoe-knockout mice78. Uraemic toxins may 
also affect thrombotic processes via actions on endothe-
lial cells and VSMCs. VSMC proliferation is a hallmark 
of intimal stenosis and VSMCs are a major contributor 
to thrombosis in arterial diseases. Several uraemic toxins, 
such as inorganic phosphate and indoxyl sulfate, induce 
VSMC proliferation, migration and calcification79 and 
augment the prothrombotic properties of VSMCs72,73,76. 
In addition, the CKD milieu alters platelet functions, 
which can contribute to atherothrombosis19,54,80,81.

The profound adverse effects of uraemic toxins 
on cardiovascular biology82 indicates that therapeu-
tic targeting of uraemic toxins or their downstream 
mechanisms could lead to cardiovascular benefits for 
patients with CKD. As described in the following sec-
tions, potential therapeutic approaches could involve 
non-pharmacological or pharmacological interventions. 
Given the complex biology of uraemic toxins, a multi-
modal approach may be warranted to effectively control 
their protean effects on the cardiovascular system.

Non-pharmacological interventions
The goal of non-pharmacological interventions is to 
modulate the production of and/or improve the clear-
ance of uraemic toxins. The rationale for these interven-
tions is built on the understanding that some uraemic 
toxins are derived from specific dietary constituents such 
as amino acids (for example, tryptophan for indoxyl sul-
fate, kynurenine and indoxyl acetate; tyrosine for p-cresyl 
sulfate), fatty acids or other nutrients such as choline (for 
TMAO) that are subsequently processed by the intesti-
nal microbiome (Figs 1,2). The intermediate metabolic 
products that arise from this processing are absorbed 
into the portal circulation and undergo further biotrans-
formation in the liver through phase I metabolism and 
phase II metabolism. In blood, some uraemic toxins bind 
tightly to albumin83 and are excreted in urine through 
tubular secretion84,85. Uraemic toxins are pathologically 
elevated even in patients with early-stage CKD, and con-
tinue to rise with disease progression72,86,87. However, the 
importance of uraemic toxin biogenesis and clearance 
to total uraemic toxin level is underscored by the fact 
that concentrations of uraemic toxins vary substantially 
between patients at the same CKD stage72,77,86–88. Indeed, 
uraemic toxins are influenced not only by their excretion 
via the kidneys but also by dietary intake, processing by 
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Biochemical processing of  
the parent drug (by oxidation, 
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to convert it into a more  
polar molecule.
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A phase of drug metabolism 
that involves conjugation  
of the drug by coupling it  
or its metabolites to another 
molecule to augment  
its excretion.
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the intestinal microbiome and biotransformation in the 
liver39,40,89–92, all of which can vary between individuals 
and may be considered as targets for intervention.

Nutritional interventions
Dietary modification has long been a cornerstone in the 
management of patients with CKD. For example, restric-
tion of dietary components such as proteins reduces 
substrates for uraemic toxin generation, and in princi-
ple reduces uraemic manifestations93,94. Over time, this 
approach tempers the emergence of metabolic abnormal-
ities and potentially delays the need for dialysis95; how-
ever, the optimal amount of protein intake for patients 
with CKD and kidney failure remains a topic of debate96.

Several studies have examined the effects of low 
protein, vegetarian or Mediterranean diets on CKD 
progression, but little is known about the influence of 
these diets on CVD events. One study of 29 healthy indi-
viduals given a high protein diet (that is, a target protein 
intake of >25% of total energy intake) or low protein diet 
(that is, a target protein intake of <25% of total energy 
intake) for 2 weeks reported that individuals on a low 
protein diet demonstrated a reduction in serum levels 
of indoxyl sulfate, indoxyl glucuronide, kynurenine 
and quinolinic acid, and reduced urinary excretion of 
indoxyl sulfate — demonstrating the feasibility of this 
approach to lowering uraemic toxin levels in patients 
with CKD97. A meta-analysis of 16 controlled clinical tri-
als, each involving at least 30 patients with CKD revealed 
that dietary restriction of protein intake to low or very 

low levels (<0.8 g/kg per day or <0.4 g/kg per day, respec-
tively), for a time period of 6–36 months, improved 
levels of bicarbonate, phosphorus and blood urea nitro-
gen, slowed the rate of progression to kidney failure, and 
displayed a trend towards lower rates of all-cause mor-
tality. Furthermore, patients on very low protein diets 
had slower progression of kidney failure than patients 
on a low protein diet98. By contrast, the Modification of 
Diet in Renal Disease (MDRD) study found no benefi-
cial effects of reducing protein intake on the progression 
of kidney failure, and noted a signal for malnutrition 
and a negative impact on survival99,100. Of note, none of 
these studies examined the effect of protein restriction 
on CVD events or CVD-related mortality.

Although the optimal level of protein restriction 
required to ameliorate uraemic toxicity in patients with 
CKD is unclear, several studies have attempted to com-
pensate for the lack of essential amino acids in a low 
protein diet by supplementation with ketoanalogues. 
The rationale for this approach is that α-ketoanalogues 
should convert into essential amino acids in the body 
via transamination and thereby compensate for the lack of 
dietary amino acids obtained through a low protein diet. 
One meta-analysis that included data from 951 patients 
demonstrated a benefit of this approach in terms of 
slowing progression of CKD without causing malnutri-
tion. However, the effect of this intervention on patient 
survival or CVD mortality benefit was not evaluated101.

Vegetarian diets may provide different proteins 
and lower total protein levels than animal-based diets, 
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Fig. 3 | Cardiovascular consequences of uraemic toxicity. Uraemic toxins can induce a plethora of cardiac and vascular 
pathological conditions, including cardiac fibrosis, accelerated atherosclerosis, thrombosis, medial vascular calcification 
and microvascular rarefaction. These processes can, in turn, drive cardiovascular complications such as myocardial 
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and some evidence suggests that these differences may 
translate into beneficial effects on cardiovascular indi-
ces, inflammatory markers, proteinuria and glomerular 
filtration rate102,103. Vegetarian diets also alter the micro-
biome in a favourable manner. For example, plant-based 
diets stimulate the growth of butyrate-producing bac-
teria and provide fibres that induce the fermentation 
of short chain fatty acids in the colon, both of which 
improve epithelial integrity, thereby preventing the 
release of pro-inflammatory factors from the intestine 
to the circulation104,105. However, one study that exam-
ined the effect of the largely plant-based Mediterranean 
diet on gut-derived uraemic toxins found that this die-
tary intervention did not lower levels of the studied urae-
mic toxins or arterial plaque burden — a surrogate of 
cardiovascular health106.

Various dietary permutations have also been attempted 
to reduce levels of TMAO. Studies in rodents and humans 
have shown that a high fat diet increases postprandial 
levels of TMAO107,108. Reducing the dietary precursors of 
TMAO through a reduction in dietary levels of red meat, 
eggs, fish and poultry may be one option for lowering 
TMAO levels94. A vegetarian diet supplemented with 
members of the Cruciferae family can reduce the activity 
of FMO3 — a flavin-dependent monooxygenase enzyme 
that is responsible for TMAO synthesis — and can thus 
reduce the production of TMA from l-carnitine109,110. 
Targeted dietary manipulations to specifically inhibit 
other enzymes involved in TMAO synthesis have also 
been attempted. For example, the Mediterranean diet is 
thought to derive some of its known health benefits from 
allicin111,112, a biochemical found in garlic and virgin olive 
oil that modulates gut microbiota through its antimicro-
bial properties to reduce the metabolism of carnitine to 
TMAO113,114. Moreover, 3,3-dimethyl-1-butanol (DMB), 
a choline analogue found in virgin olive oil and red wine, 
inhibits microbial TMA lyases and also reduces TMAO 
production115,116. However, a prospective multicentre 
study in Spain showing a reduction in cardiovascular 
events among individuals at a high cardiovascular risk 
following implementation of a Mediterranean diet sup-
plemented with extra-virgin olive oil111 did not evaluate 
individuals with CKD.

TMAO synthesis from dietary l-carnitine involves 
gut microbiota through two sequential gut microbiota- 
dependent transformations: namely, the rapid generation 

of the atherogenic intermediate γ-butyrobetaine (GBB) 
followed by its transformation into TMA. Dietary inter-
ventions can lower the concentration of l-carnitine, 
but can in parallel modify microbiota to reduce TMAO 
production. The influence of diet on the two-step, 
gut-dependent process of TMAO generation has been 
examined in healthy individuals117. Ingestion of oral 
isotope tracers followed by extensive microbial analy-
sis demonstrated that participants who followed a veg-
etarian or vegan diet had significantly lower TMAO 
levels than those of individuals on an omnivorous diet. 
Thus, reduced ingestion of l-carnitine along with alter-
ations in gut microbiota contributes to generally lower 
TMAO levels among vegans and vegetarians than among 
meat eaters117,118.

Some of the above-described studies have lacked 
information on uraemic toxin levels and their associ-
ation with CVD events or CVD mortality. However, in 
the absence of such information, the potential beneficial 
effect of a particular diet on the cardiovascular health of 
patients with CKD should be carefully weighed against 
their putative limitations, such as increases in potas-
sium and oxalate load94. Early and protracted dietary 
intervention may be required to achieve an appreciable 
reduction in CVD events among patients with CKD. 
In this case, long-term compliance may become a lim-
iting factor. Despite these limitations, an accumulating 
body of evidence suggests that plant-based diets offer 
distinct advantages for the management of CKD, includ-
ing beneficial effects on protein, carbohydrate, fat and 
phosphate levels, as well as improvements in acidosis94. 
Pending additional longitudinal, well-powered studies, 
patient-tailored diets that reduce uraemic toxins and 
their related CVD outcomes are yet to be established.

Targeting microbiota
Intestinal microbiota have an integral role in the mainte-
nance of intestinal barrier integrity and regulation of host 
immunity and metabolic processes, and have been linked 
to hallmarks of CVD, including hypertension119 and 
atherosclerosis120. The accumulation of uraemic toxins in 
patients with CKD and consumption of antibiotics, such 
as macrolides, β-lactams and fluroquinolones, can pro-
foundly affect the composition of intestinal microbiota, 
resulting in ‘uraemic gut dysbiosis’121. One mouse model 
of CKD demonstrated intestinal dysbiosis of various 
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proteobacteria, increased translocation of bacteria across 
the intestinal barrier and increased serum levels of bac-
terial endotoxin122. The dysbiosis of patients with CKD 
is characterized by a decrease in the abundance of 
Clostridia and Bacillus spp.122. and an increase in sev-
eral bacterial families that contain urease (for example, 
Alteromonadaceae and Cellulomonadaceae), uricase (for 
example, Cellulomonadaceae and Dermabacteraceae) 
and tryptophanase (for example, Enterobacteriaceae and 
Verrucomicrobiaceae)123. An analysis of 19 intestinal 
microbial families that were overexpressed in patients 
with kidney failure compared with levels in healthy 
individuals demonstrated that 12 possessed urease, 
5 possessed uricase and 4 possessed indole and p-Cresol- 
forming enzymes123. These changes would be expected 
to augment the production of urea, uric acid and indole, 
and compromise intestinal barrier function, result-
ing in the translocation of bacteria and toxins into the 
circulation124,125. A notable depletion of short-chain fatty 
acids such as butyrate and propionate in patients with 
CKD indicates a shift away from saccharolytic fermenta-
tion (indicative of gut microbiome homeostasis) towards 
proteolytic fermentation (resulting in the production of 
harmful uraemic toxins from amino acids and proteins). 
These perturbations negatively affect the cardiovascular 
health of patients with CKD, as reviewed elsewhere126. 
Collectively, these findings underlie the rationale to 
restore the microbiome balance in patients with CKD.

The microbiome can be manipulated using a num-
ber of strategies, including ingestion of unprocessed 
fibre-rich food items, avoidance of certain drugs such 
as proton pump inhibitors and/or administration 
of prebiotics (such as arabinoxylan oligosaccharides  
or non-digestible oligo and polysaccharides), probiotics, or  
synbiotics, as summarized in detail elsewhere127. Human 
studies of prebiotics in patients with CKD have yielded 
mixed results128. A 12-week study in which patients 
with CKD were given muffins loaded with pea hull and 
the prebiotic inulin128, based largely on the hypothesis 
that the increased fibre load would aid delivery of the 
prebiotic to the colon and thereby increase saccharo-
lytic fermentation, found that this intervention reduced 
levels of p-cresyl sulfate in blood. Following the same 
rationale, administration of an α-glucosidase inhibitor 
(acarbose)129 and the sodium–glucose co-transporter 2 
inhibitor canagliflozin130 to block carbohydrate absorp-
tion in the small intestine and increase levels of carbohy-
drates for saccharolytic fermentation in the large colon 
of mice also reduced serum concentrations of p-Cresol 
sulfate. That study used mice with normal kidney func-
tion and this approach should be applied to a CKD 
mouse model to examine the effect of this intervention 
on uraemic toxins.

In animal models of hypertension without CKD, die-
tary supplementation with the probiotic Lactobacillus 
murinus or use of a high-fibre diet combined with 
acetate (again, to improve saccharolytic fermentation) 
reduced blood pressure, cardiac fibrosis and left ven-
tricular hypertrophy131,132. Probiotics have also been 
investigated in patients with CKD. In one 6-week ran-
domized, placebo-controlled, crossover trial, admin-
istration of Streptococcus thermophilus, Lactobacillus 

acidophilus and Bifidobacterium longum to patients 
with CKD reduced plasma levels of p-Cresol sulfate but 
not indoxyl sulfate105. Studies of synbiotics have shown 
similarly variable effects on uraemic toxins133,134. In one 
study, administration of a combination of prebiotics 
(high-molecular-weight inulin, fructo-oligosaccharides 
and galacto-oligosaccharides) and probiotics (nine dif-
ferent strains across the Lactobacillus, Bifidobacterium, 
and Streptococcus genera) to patients with non-dialysis 
CKD for 6 weeks led to a significant reduction in lev-
els of p-Cresol sulfate but not indoxyl sulfate106. Except 
for changes in the stool microbiome (characterized by 
an increase in Bifidobacterium spp. and depletion of 
Ruminococcaceae spp.), no alterations in parameters 
such as inflammatory cytokines and oxidative stress 
biomarkers were noted. Prospective clinical trials are 
underway to examine the effects of dietary interven-
tions and approaches to manipulating the intestinal 
microbiota on CKD outcomes135; however, these studies 
are typically short-term and not powered to examine 
CVD events.

Investigations of the effects of probiotic supplements 
on TMAO levels have yielded inconsistent results127,136,137. 
One small randomized study found that administration 
of the multi-strain probiotic VSL#3 did not signifi-
cantly attenuate the increase in plasma levels of TMAO 
induced by a 4-week, high-fat diet in non-obese men137. 
Other approaches have involved fecal transplantation 
or ingestion of genetically engineered bacteria to mod-
ulate uraemic toxin-producing enzymes or approaches 
to scavenge and/or neutralize endotoxins in the circu-
lation as a result of barrier dysfunction caused by gut 
dysbiosis138. Targeting of gut bacteria that harbour the 
indoxyl sulfate substrate, tryptophanase, or the TMAO 
substrate, TMA, can lower circulating levels of indoxyl 
sulfate and TMAO in mice139,140. Targeting of the small 
molecules produced by microbiota (the secretome) 
has also been suggested as an approach to modulating 
host–microbiome interactions as a strategy for lowering 
uraemic toxins141.

Despite the potential of these approaches to reduce 
uraemic toxins, the effect of such interventions on CVD 
risk in patients with CKD remains unclear. Studies 
involving manipulation of the microbiome have pro-
duced conflicting results, potentially because the influ-
ence of host factors, such as age, sex, ethnicity, dietary 
patterns, comorbidities and medication intake, on the 
microbial landscape remains incompletely defined. 
Successful translation of microbiome-targeted thera-
pies would also require major obstacles to be addressed, 
such as the need to maintain a stable microbial ecosys-
tem in the gut of patients despite frequent changes in 
their environment resulting from exposure to hospital 
or dialysis units and/or antibiotics, which may threaten 
the stability of microbiota communities142. Most impor-
tantly, the ability of these interventions to effectively 
reduce levels of a range of uraemic toxins over a pro-
tracted period of time with resultant clinically mean-
ingful CVD outcomes in patients with CKD is yet to be 
demonstrated. Marginal reductions in circulating urae-
mic toxin levels may not be sufficient to derive biolog-
ical benefits, as demonstrated by a study in which even 

Prebiotics
Components of food that 
induce the growth or activity  
of beneficial microorganisms  
to maintain microbial 
homeostasis.

Probiotics
Live microorganisms that  
can improve or restore the  
gut flora to maintain microbial 
homeostasis.

Synbiotics
A combination of probiotics 
and prebiotics that are 
intended to improve the 
survival and activity of 
beneficial microorganisms  
in the gut.
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low levels of uraemic toxins were still able to drive pro-
thrombotic processes72. Adding to the complexity of this 
topic, emerging work casts doubt on the contribution of  
the microbiome to levels of uraemic toxins. A study  
of 141 patients showed an increase in levels of PB urae-
mic toxins with CKD progression; however, the levels of 
these toxins and their precursors remained unchanged 
in feces143. Anaerobic culture of fecal samples from the 
patients showed no difference in the rate of p-Cresol sul-
fate, indole and indole-3 acetic acid production, strongly 
suggesting that increased plasma levels primarily result 
from the retention of uraemic toxins as a consequence 
of impaired kidney function rather than an increase in 
uraemic toxin generation. These results encourage care-
ful reconsideration of alterations in the microbiome as 
a therapeutic strategy to reduce the burden of uraemic 
toxins and as such, microbial intervention remains an 
experimental pre-clinical modality.

Albumin displacers
Human serum albumin (HSA) is the most abundant 
protein in plasma and the main carrier of PB uraemic 
toxins144. The fatty acid binding sites of HSA serve as 
ligand binding domains for PB uraemic toxins145–147, 
allowing the hydroxyl group of indoxyl sulfate to interact 
with Tyr410 of HSA while its amide group interacts with 
Leu430 (ref.148) of HSA (Fig. 5a). Indoxyl sulfate also forms 
salt bridges, hydrogen bounds and van der Wall interac-
tions with other residues in that binding domain148. Once 
bound to HSA, the ability of haemodialysis and haemo-
diafiltration to clear PB uraemic toxins is limited149,150. 
For example, concentrations of indoxyl sulfate and 
p-Cresol sulfate are reduced by only 10–35% with hae-
modialysis, whereas the concentration of more tightly 
bound uraemic toxins, including 3-carboxy-4-methyl- 
5-propyl-2-furanproprionic acid, remained unchanged 
or increased after haemodialysis151. Techniques such 
as fractionated plasma separation and adsorption 

(so-called albumin dialysis) have been proposed as an 
approach to clear PB uraemic toxins, but this approach 
is labour intensive, not easily scalable and fraught with 
complications such as bleeding and thrombosis152.

Certain ligands can affect the structure of HSA or 
alter its affinity to ligands such as indoxyl sulfate144. This 
approach could potentially be used to displace indoxyl 
sulfate from HSA and increase the amount of HSA-free 
indoxyl sulfate for clearance by haemodialysis (Fig. 5b). 
For example, infusion of the competitive ligands ibupro-
fen and furosemide led to doubling of indoxyl sulfate 
and indole-3 acetic acid clearance from plasma in an 
in vitro haemodialysis system153. Although an attractive 
concept, the translation of this technique to the clinical 
realm is contingent on the identification of an inert and 
safe displacer, deciphering the off-target effects of the 
displacer once bound to HSA (for example, effects on 
hormones and drugs), and the fate of the displacer itself.

Gastrointestinal dialysis
In low-resource settings or situations in which tradi-
tional dialysis is not readily available, protocols have 
been developed for repetitive oral administration of 
cathartic compounds to promote the excretion of urae-
mic toxins and excess fluids — methods that are collec-
tively referred to as ‘gastrointestinal dialysis’. Although 
terminated prematurely, an open-label, randomized, 
controlled trial of oral magnesium oxide (MgO; a cathar-
tic), and the oral carbon adsorbent AST-120 found that 
MgO, but not AST-120, may be effective in slowing pro-
gression of coronary artery calcification in patients with 
stages 3–4 CKD. However, the MgO group suffered from 
a dropout rate of 27%, primarily due to diarrhea154.

Pharmacological interventions
Whereas non-pharmacological interventions are aimed 
at reducing the generation or improving the clearance 
of uraemic toxins, pharmacological interventions are 
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Fig. 5 | Consequences of indoxyl sulfate binding to albumin. a | Indoxyl sulfate interacts with human serum albumin  
at drug-binding site 2. Indoxyl sulfate is shown as a stick representation with a semi-transparent van der Waals  
surface (magenta). Selected side chains are shown as sticks color-coded by atom type; yellow dashed lines indicate 
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generally aimed at reducing the downstream intracel-
lular effects of uraemic toxins without altering their 
concentrations. The ideal pharmacological regimen is 
scalable, sustainable over a long period of time and can 
be targeted to a specific disease manifestation induced by 
a particular uraemic toxin or a group of uraemic toxins.

Klotho
Klotho is a membrane-bound protein that is highly 
expressed in kidney tubules but also exists as a secreted 
form155. Membrane-bound Klotho is a coreceptor for 
FGF23 and modulates FGF23 signal transduction. 
Soluble Klotho is found in the blood, urine, cerebro-
spinal fluid and is involved in processes such as aging, 
energy metabolism, Wnt signalling, anti-oxidation, 
ion transport and in the regulation of parathyroid hor-
mone, the renin–angiotensin–aldosterone system and 
1,25(OH)2VD3 production155. Klotho has also demon-
strated anti-senescent properties in several organ sys-
tems including aortic valve156, regenerating muscle157 and 
even adipose-derived stem cells158. Transgenic overex-
pression of Klotho expression in mouse models of CKD 
reduces vascular calcification, whereas Klotho haplo-
insufficiency has the opposite effect159. CKD is a state 
of Klotho deficiency160 and PB uraemic toxins directly 
influence Klotho expression. Both indoxyl sulfate and 
p-cresyl sulfate hypermethylate the promoter of Kl, 
which results in downregulation of Klotho, exacerba-
tion of renal fibrosis and deterioration of renal function 
in mice161.

Administration of recombinant α-Klotho protein 
reduced kidney and cardiac fibrosis, attenuated car-
diac remodelling and improved cardiac function in a 
mouse model of CKD162. In vitro and in vivo studies 
have shown that Klotho also protects against indoxyl 
sulfate-associated cardiac toxicity and left ventricular 
hypertrophy, with Klotho-deficient mice showing an 
exaggerated response to indoxyl sulfate163. In patients 
with CKD, lower serum Klotho levels were associa
ted with arterial stiffness even after correcting for con-
founding factors164. By contrast, a 2.6-year follow-up 
study of patients with CKD stages 2–4 found that FGF23, 
but not Klotho itself, was associated with decompen-
sated heart failure, although neither marker predicted 
development of atherosclerosis165.

The link between Klotho and uraemic solutes remains 
poorly explored. Daily intraperitoneal injection of 
indoxyl sulfate for 8 weeks induced ventricular hyper-
trophy in mice — an effect that was more pronounced 
in Klotho-haplodeficient mice163. This ventricular hyper-
trophy was attenuated by administration of Klotho 
through inhibition of indoxyl sulfate-induced p38 and 
ROS signalling163.

Ongoing clinical trials are aimed at assessing the value 
of serum Klotho as a predictor of cardiovascular calcifica-
tion in patients with CKD166. It is conceivable that Klotho 
supplementation or use of a peptide-based approach may 
have beneficial effects in patients with CKD, including on 
the progression of kidney disease and cardiomyopathy162. 
However, additional studies are warranted to assess the 
beneficial effects of Klotho on uraemic toxin levels and 
CVD outcomes in patients with CKD.

Aryl hydrocarbon receptor inhibitors
AHR signalling is a well-known xenobiotic pathway asso-
ciated with chemical carcinogenesis. AHR is a receptor 
that is ubiquitously expressed in the cytosol of cells, 
which upon ligand binding undergoes nuclear translo-
cation to induce the transcription of genes such as those 
encoding specific members of the cytochrome P450 
family of microsomal enzymes (Fig. 4). A wealth of stud-
ies in rodents have uncovered a role for AHR signalling 
in cardiovascular functions, including cardiac myocyte 
function167,168, angiogenesis (that is, vessel development 
from the existing vascular bed) and neovascularization 
(that is, vessel development from a naive bed)169,170, blood 
pressure regulation171,172, atherosclerosis78, myocar-
dial ischaemia–reperfusion injury and post-ischaemic 
conditioning173, and stroke109.

Mounting evidence also implicates AHR signalling 
as an important mediator of uraemic toxicity by a set 
of uraemic toxins that are particularly cardio- and vas-
culotoxic. Uraemic toxins derived from tryptophan 
amino acids, including indoxyl sulfate, indoxyl acetate, 
kynurenine, kynurenic acid, are all AHR ligands174,175. 
Several mouse and human studies have implicated 
CKD as a global state of AHR activation with particular 
involvement of the myocardium and vasculature175,176. 
As described earlier, indoxyl sulfate and kynurenine 
bind to the ligand-binding domain of AHR, leading 
to increased levels of tissue factor in ECs and VSMCs, 
while simultaneously AHR binds tissue factor to prevent 
its degradation74 (Fig. 4). This bimodal action increases 
levels of tissue factor, which promotes thrombosis, upon 
spontaneous rupture of plaque, thus augmenting the 
risk of adverse cardiovascular events. The central role 
of AHR in cardiovascular functions, as well as its acti-
vation by uraemic toxins, provides a strong mechanis-
tic rationale for therapeutic targeting of AHR in CKD. 
A number of AHR inhibitors are already in pre-clinical 
development. We have assessed the effects of AHR 
inhibitors in mouse models of vascular injury-associated 
thrombosis in mice with adenine-induced CKD and in 
mouse models of uraemic toxicity induced by exposure 
to indoxyl sulfate or kynurenine73,77. Emulating features 
seen in patients with CKD, these mouse models exhib-
ited increased levels of tissue factor in the aorta and 
heightened thrombosis at baseline as demonstrated by a 
shortened time to occlusion of carotid blood flow follow-
ing ferric chloride-induced vascular injury as a model of 
occlusive thrombosis; administration of AHR inhibitors 
downregulated tissue factor expression and suppressed 
thrombosis.

Further mechanistic probing of the AHR–tissue 
factor–thrombosis axis showed that ligand-activated  
AHR regulates TF and thrombosis through the regulation 
of STUB1 (also known as CHIP)73 — a U-box-containing  
E3 ligase that ubiquitinates several substrate proteins177. 
Genetic manipulation of STUB1 in VSMCs showed 
that loss of STUB1 activity reduced tissue factor ubiq-
uitination and increased thrombosis73. YL-109, an ana-
logue of 2-(4-amino-3-methylphenyl)benzothiazole, 
has been assessed in preclinical studies owing to its 
proposed tumour-suppressing properties. It is a partial 
AHR inhibitor and upregulates STUB1 transcription178. 

Xenobiotic
A chemical substance found 
within an organism that is  
not naturally produced or 
expected to be present  
within the organism or  
in an ecological system.
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An increase in STUB1 protein levels induced degrada-
tion of tissue factor and suppressed thrombosis in a flow 
loop system73. Importantly, the activation of STUB1 by 
YL-109 did not augment the risk of bleeding73. These 
studies suggest support of the pharmacological rationale 
for suppressing the AHR-STUB1 axis to downregulate 
tissue factor and thrombosis in patients with CKD.

At least three AHR inhibitors, including CH223191 
and CB7993113, have been assessed in models of CKD, 
illustrating a number of intriguing points. First, AHR 
inhibitors effectively extended the time to occlusion in 
CKD mice to that observed in non-CKD mice following 
ferric chloride-induced vascular injury73. Notably, inhi-
bition of AHR did not increase the bleeding time of CKD 
mice as this manipulation did not alter physiological 
haemostatic mechanisms73. By contrast, the antithrom-
botic actions of heparin are accompanied by substan-
tially prolonged bleeding time in CKD mice, because 
agents such as heparin or oral anticoagulants perturb 
the haemostatic machinery in blood as part of their 
action73. These findings in mice corroborate observa-
tions in patients with CKD. Estimates suggest that every  
30-ml/min decrease in creatinine clearance is associa
ted with a 50% increase in the risk of major and minor 
bleeding179. Thus, AHR seems to represent a safe and 
CKD-specific antithrombotic target in uraemic mice73. 
The finding that this approach can lower the throm-
botic risk induced by the CKD milieu to a range seen in 
non-CKD models is encouraging. Second, the finding 
that AHR inhibitors antagonize the effects of indoxyl 
sulfate to downregulate TF in VSMCs72 encourages the 
exploration of uraemic toxins as biomarkers to guide 
AHR inhibitor therapy in patients with CKD72.

Adverse and off-target effects of AHR. Examination of 
potential adverse effects is important when considering 
any protein target, as is an understanding of the limi-
tations of rodent models for studying AHR biology, as 
rodent and human AHR exhibit different ligand selectiv-
ity and gene regulation180,181. For example, mouse AHR 
demonstrated 10-fold higher binding affinity for typical 
AHR ligands such as 2,3,7,8 tetrachlorodibenzo-p-dioxin 
than human AHR, whereas human AHR had higher 
binding for indirubin180. In the same vein, genes iden-
tified as differentially expressed between mouse and 
human AHR are known to be involved in a number of 
biological pathways, including cell proliferation and the 
inflammatory response181. These studies underscore a 
need to exercise caution in extrapolating mouse data to 
humans for AHR studies. Global Ahr-knockout mice  
are viable and fertile182 but show vascular defects (patent 
ductus venosus) in liver183 and a 24% reduction in plate-
let counts, illustrating the importance of AHR expres
sion in certain organ or cell types184. As mentioned 
earlier, members of the cytochrome P450 system of  
microsomal enzymes are direct transcriptional targets  
of AHR185. These enzymes catalyse the first step in the 
metabolism of lipophilic xenobiotics or drugs to generate 
more water-soluble intermediate compounds that can be 
readily excreted, suggesting that AHR inhibitors could 
induce undesirable drug–drug interactions. In addi-
tion, AHR regulates the expression of other metabolic 

enzymes, such as aldehyde dehydrogenases (specifically 
ALDH1A1 and ALDH3A1) and specific drug transport-
ers, such as multidrug resistance-associated protein 4 
(encoded by ABCC4) and P-glycoprotein186. Available 
evidence suggests that uraemic toxins influence the 
expression of certain drug transporters, which can affect 
drug pharmacokinetics. For example, indoxyl sulfate 
upregulates the expression of P-glycoprotein in human 
hepatoma (HepG2) cells. The same study also demon-
strated that of patients with CKD who underwent heart 
or kidney transplantation, those with higher serum lev-
els of indoxyl sulfate required higher doses of ciclosporin 
(a P-glycoprotein substrate) to obtain the cyclosporin 
target blood concentration187. Thus, the CKD milieu 
may influence the pharmacokinetics of various medica-
tions through modulation of AHR-mediated transcrip-
tional processes186 and AHR inhibitors may normalize 
this adverse effect of uraemic toxins on drug clearance 
mechanisms. However, the effect of AHR inhibitors on 
the pharmacokinetics of drugs and other endogenous 
compounds188 and the potential for adverse drug–drug 
interactions require careful consideration.

Limitations of AHR inhibitors. So far, these inhibi-
tors have been developed using either cell-based AHR 
activity assays (for example, the Bayer compound 
BAY218)189, or by in silico screening or homology mod-
elling (CH223191 and CB7993113)190. In the absence of 
a crystal structure of human AHR, proof of their binding 
to the AHR is lacking. The absence of this information is 
notable given the increasing recognition that a number 
of drugs do not bind to their intended protein targets, 
but rather elicit biological activity through off-target 
effects191. The availability of this critical information 
will help to drive the development of highly selective 
AHR inhibitors and confirm their mechanism of action. 
Moreover, not all AHR inhibitors have been assessed in 
models of CKD.

AHR inhibitors can be classified as complete antag-
onists (such as CB7993113) or partial antagonists (such 
as YL109)192. On the basis of their ability to selectively 
regulate AHR signalling, AHR ligands are classified 
as either selective AHR modulators193 (for example, 
3′,4′-dimethoxy-α-naphthoflavone194 and 6,2′,4′-trime
thoxyflavone195) or non-selective AHR modulators (for 
example, CH223191 and CB7993113). Several AHR 
inhibitors currently in cancer trials196,197 are complete 
AHR antagonists. Selective AHR modulators remain 
unexplored for therapeutic use in clinical studies. 
However, our current understanding of the integral 
role of AHR in cardiovascular biology, its activation by 
uraemic toxins, and its association with uraemic com-
plications, suggests that this receptor is a tantalizing 
therapeutic target for CKD-associated CVD.

Kynureninase
The tryptophan metabolite kynureninase is associated 
with CVD in the general population60,198, and has demon-
strated pro-thrombotic properties in a mouse model of 
CKD77. Accumulation of kynureninase is evident in early 
stages of CKD and progresses with CKD progression, 
reaching levels of 4.8–6.5 μM (normal <2 μM).
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As mentioned earlier, kynurenine is generated by the 
catabolism of tryptophan by indoleamine 2,3-dioxygenase 1  
(IDO1) or tryptophan 2,3-dioxygenase 2 (TDO2), and 
is further degraded by kynureninase40. Therapeutic 
strategies to target kynurenine include suppression of 
its production or approaches to stimulating its deg-
radation. IDO1 and kynurenine have been attributed 
immunosuppressive properties through the activation 
of AHR, leading to the production of immune-tolerant 
dendritic cells and regulatory T cells. Tumour cells pro-
duce excessive kynurenine to evade immune recognition 
and suppression of kynurenine production has therefore 
been considered as a clinical approach in the oncology 
field199. Efforts to promote kynurenine degradation 
through use of pegylated-kynureninase have also been 
made200. However, caution is warranted with this agent, 
as kynureninase may increase levels of metabolites such as  
anthranilic acid and quinolinic acid (Fig. 1b). Both of 
these metabolites are uraemic toxins that are associated 
with augmented thrombosis in patients77, and contribute 
to other systemic toxic effects, such as neurocognitive 
diseases201,202. Kynureninase supplementation has not 
been examined in models of CKD. Careful long-term 
pre-clinical CKD models and clinical studies involv-
ing patients with CKD are warranted to examine the 
risk–benefit profile of targeting kynureninase in CKD.

Kinase inhibitors
Kinases are well-established mediators of almost all cel-
lular functions and are validated targets, mostly in the 
field of cancer treatment. Tyrosine kinases (including 
both receptor and non-receptor kinases, such as Src 
kinases) and serine/threonine kinases (such as AKT) 
have been implicated in various kidney pathological 
conditions, such as liver fibrosis, glomerulonephritis and 
diabetic kidney disease203,204, and are also considered to 
mediate several CVD pathological conditions, such as 
cardio-pulmonary fibrosis and ischaemia–reperfusion 
injury205. Despite these connections, little is known 
about the link between uraemic toxins and kinases. 
Indoxyl sulfate has been shown to induce the release of 
microparticles from human umbilical vein endothelial 
cells via upregulation of the p38–mitogen-activated pro-
tein kinase signalling pathway206, and such microparti-
cles have been implicated in promoting thrombosis207. 
However, key questions as to the effect of uraemic 
toxins on kinases and the relevance to CKD-associated 
CVD remain unanswered. A variety of kinase inhibi-
tors are under preclinical development and/or are FDA 
approved208, suggesting that these could be repurposed 
for therapeutic purposes for CKD pending the outcomes 
of appropriate studies.

TMAO inhibitors
TMAO is a metabolite of choline and l-carnitine, which 
are processed through specific enzymes in the gut micro-
biome (Fig. 2). In addition to dietary interventions and 
probiotics, investigators have assessed the ability of anti-
biotics to reduce the production of TMAO, and demon-
strated beneficial effects on TMAO levels and aortic 
plaque development in mice fed with a high l-carnitine 
and/or choline diet209. However, this approach is likely to 

induce non-specific alterations in the gut microbiome. 
Meldonium is an aza-analogue of GBB — the quaternary 
amine bio-precursor of l-carnitine — and competes 
with l-carnitine and GBB for γ-butyrobetaine hydro
xylase and carnitine/organic cation transporter type 2 
(OCTN2), which synthesizes TMAO210. Treatment of 
rats with meldonium significantly decreased intestinal 
microbiota-dependent production of TMA and TMAO 
from l-carnitine but not from choline211. The adminis-
tration of meldonium together with l-carnitine signif-
icantly increased GBB concentration in blood plasma 
and in isolated rat small intestine perfusates. Meldonium 
did not influence bacterial growth or bacterial uptake 
of l-carnitine but significantly decreased TMA produc-
tion by K. pneumoniae. DMB is an inhibitor of choline 
lyase (Fig. 2). Mice fed a western diet with or without 
1.0% DMB in drinking water for 8 weeks showed sig-
nificantly reduced plasma TMAO levels and improved 
cardiac function compared with mice fed a western diet 
only116. DMB also prevented an increase in levels of 
proinflammatory cytokines and interstitial fibrosis in the 
hearts of these mice. However, DMB cannot completely 
eliminate TMAO synthesis. A 2018 study reported that 
enalapril lowered TMAO levels by increasing its excre-
tion without affecting its production or the gut microbi-
ome, suggesting that a combined approach to reducing 
TMAO production while promoting TMAO elimination 
might be more effective than either approach alone212. 
Although encouraging, studies to date have been pre-
clinical and involved rodent models with normal kidney 
function; hence, the ability of these compounds to pre-
vent CKD-associated CVD in experimental models and 
human patients through modulation of TMAO levels is 
yet to be established.

AST-120
The role of the gut flora in generating precursors for 
some uraemic toxins has generated interest in phar-
macological agents that are enterally active. Of these, 
AST-120 is probably best known. AST-120 is an oral 
sorbent comprising porous spherical carbon particles 
that are capable of non-specifically adsorbing several 
low-molecular-weight molecules (100–10,000 kDa). 
Intestinal adsorption of intermediate metabolites of 
indoxyl sulfate, p-Cresol sulfate and other uraemic tox-
ins by AST-120 reduces their availability to mediate toxic 
downstream effects213. On the basis of this rationale, 
pre-clinical studies have been performed to assess the 
effects of AST-120 on various uraemic manifestations, 
including atherosclerosis, cardiac dysfunction and bone 
disease, as discussed elsewhere214.

AST-120 has been approved for the treatment of urae-
mic symptoms and to delay progression of disease in CKD 
patients in Japan since 1991 (ref.215). However, human 
studies have yielded conflicting results. Two multi
national, randomized, double-blind, placebo-controlled  
trials that evaluated the effects of AST-120 on the pro-
gression of CKD in 2,035 adults with moderate to 
severe CKD216 found no difference between the inter-
vention and placebo groups in the time taken to reach 
the primary end point (a composite of dialysis initia-
tion, kidney transplantation and doubling of the serum 

Aza-analogue
Chemical compounds in which 
a carbon atom is replaced by a 
nitrogen atom.
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creatinine level). Although clinical studies have primarily 
focused on the progression of CKD, a retrospective analy
sis of nearly 200 patients with non-dialysis-dependent 
CKD found significantly lower aortic calcification in 
those treated with AST-120 (refs217,218). Despite these 
beneficial effects, AST-120 has not been approved for 
use in the USA or Europe owing to concerns related to 
its non-specific binding to several low-molecular-weight 
molecules in the gut. Nonetheless, these studies have 
paved the way for the development of targeted binders 
of the uraemic toxin precursors in the gut.

Conclusions and future directions
Epidemiological studies indisputably identify CKD as 
an independent risk factor for various CVDs, implicat-
ing the existence of CKD-specific risk mediators. These 
mediators include uraemic toxins, such as indoxyl 
sulfate and kynurenine, AHR activation, immune dys-
function and gut dysbiosis, and hence a multipronged 
approach is warranted to target these processes. An 
increasing number of mechanistic studies demonstrate 
the existence of a causal link between uraemic toxins 
and CKD-associated CVD, and as our understanding of 
the pathogenic contribution of uraemic toxins to CVD 
unfolds, a parallel, comprehensive approach is needed to 
translate this knowledge to the clinical realm.

As the processes underlying CVD development begin 
in the early stages of CKD and CVD risk increases as 
CKD progresses, it stands to reason that early targeting 
of uraemic toxins should be considered. Conventional 
haemodialysis cannot efficiently remove vasculotoxic 

PTUBs, which may underlie the poor outcomes of 
patients with advanced CKD219.

The unique environment of CKD demands a unique 
approach. A number of nodes have been identified 
through which the pathogenicity of uraemic toxins can 
potentially be targeted; however, further research into 
the cardiovascular benefits of these targeted approaches 
is needed. A multimodal approach is also likely to be 
needed, with adjustments according to the different 
stages of CKD. For example, levels of uraemic toxins 
could be regulated through nutrition and microbiota 
manipulations in early stages of CKD, whereas more 
aggressive manoeuvres to improve the clearance of 
uraemic toxins could be applied in patients with kid-
ney failure through the use of selective dialyzers for 
uraemic toxins31,32,220. The pharmacological targeting of 
cellular pathways affected by uraemic toxins could span 
all stages of CKD and could potentially be guided by 
biomarkers of CVD.

The successful translation of discoveries to the clinical 
realm will be contingent on overcoming bottlenecks such 
as the altered pharmacokinetics of patients with CKD, and 
will require careful evaluation of the cost–benefit ratio of 
protracted therapy, as well as consideration of primary 
end points for clinical studies. These and other challenges 
can be overcome by a coordinated effort by the neph-
rology community, biotechnology industry and regu
latory agencies. Such an approach is needed to address  
the enormous CVD burden of patients with CKD.
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